首页> 外文OA文献 >Computational Complexity of Cyclotomic Fast Fourier Transforms over Characteristic-2 Fields
【2h】

Computational Complexity of Cyclotomic Fast Fourier Transforms over Characteristic-2 Fields

机译:基于maTLaB的分圆快速傅里叶变换的计算复杂度   特征-2字段

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cyclotomic fast Fourier transforms (CFFTs) are efficient implementations ofdiscrete Fourier transforms over finite fields, which have widespreadapplications in cryptography and error control codes. They are of greatinterest because of their low multiplicative and overall complexities. However,their advantages are shown by inspection in the literature, and there is noasymptotic computational complexity analysis for CFFTs. Their high additivecomplexity also incurs difficulties in hardware implementations. In this paper,we derive the bounds for the multiplicative and additive complexities of CFFTs,respectively. Our results confirm that CFFTs have the smallest multiplicativecomplexities among all known algorithms while their additive complexitiesrender them asymptotically suboptimal. However, CFFTs remain valuable as theyhave the smallest overall complexities for most practical lengths. Our additivecomplexity analysis also leads to a structured addition network, which not onlyhas low complexity but also is suitable for hardware implementations.
机译:循环快速傅立叶变换(CFFT)是有限域上离散傅立叶变换的有效实现方式,在密码术和错误控制代码中具有广泛的应用。由于它们的乘法和整体复杂性较低,因此引起了极大的兴趣。然而,它们的优点在文献中已通过检验得到了证明,并且没有关于CFFT的渐近计算复杂度分析。它们较高的加法复杂度也导致硬件实现方面的困难。本文分别推导了CFFT乘法和加法复杂度的界线。我们的结果证实,在所有已知算法中,CFFT的乘法复杂度最小,而其累加复杂度则使它们渐近次优。但是,CFFT仍然有价值,因为它们对于大多数实际长度而言具有最小的总体复杂度。我们的加性复杂度分析还导致了结构化的附加网络,该网络不仅具有较低的复杂度,而且适用于硬件实现。

著录项

  • 作者

    Wu, Xuebin; Yan, Zhiyuan;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号